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APPLICATION OF THE METHOD OF CHARACTERISTICS TO SUPERSONIC ROTATIONAL FLOW

By AxTonio FERRI

SUMMARY

A system for caloulating the physical properties of supersonic
rofational flow with axial symmetry and supersonic rotational
flow in a two-dimensional field was determined by use of the
characteristics method. The system was applied to the study
of external and internal flow for supersonic inlets with axial
symmeiry. For a circular conical inlet the shock that occurred
at the lip of the inlet became stronger as it approached the axis
of the inlet and became a normeal shock at the aris. The region
tn which strong shock occurred increased with the increase of
the angle of internal cone at the lip of the inlet. For an inlet
with a central body the method of characteristics was applied to
the design of an internal-channel shape that, theoretically, results
in very efficient recompression in the inlet; it was shown that
if an effuser ig connected with the diffuser a body of revolution
with very small shock-ware drag can be determined.

INTRODUCTION

The characteristics method for the determination of super-
sonic phenomena was first used by Prandtl and Busemann
for two-dimensional flow (references 1 and 2). For flow
with axial symmetry Frankl (reference 3) used the method
of characteristics for determining the shape of a supersonic
circular effuser with uniform exit velocity, and Ferrari
(references 4 and 5) independently used the characteristics
method for determining supersonic phenomena for every
type of boundary condition. Subsequently Guderley (refer-
ence 6) and Sauer (reference 7) transformed the system pro-
posed by Frankl and Ferrari and obtained a different
analytical solution of the problem. In all applications the
hypothesis of potential flow was made; therefore the
cquation of potential flow was used.

When shock waves that are not plane (two-dimensional
flow) or conical (flow with axial symmetry) occur in uniform
flow, the variation of entropy across the shock is not constant
and the flow behind the shock is no longer isentropic and
becomes rotational. If the variation of entropy is small,
the effect of rotation of the flow is not important for de-
termining the pressure distribution along a body and the
theory of potential flow gives correct results. If the shock
wave is strong and has large curvature, however, the effect

of the rotation becomes important and the flow must be
considered as rotational.

The method of characteristics can be extended to apply to
rotational flow if, in place of the potential function for the
differential equation of motion, the stream funection con-
sidered by Crocco (reference 8) is used. With the character-
istics method for rotational flow a more exact determination
can be made of the shape of the shock wave and the distribu-_
tion of velocity and pressure for phenomena in which the
effect of rotation is important, as in the internal flow through
supersonic inlets. The procedure of numerical calculation is
similar and not much more complicated than that used for
the case of potential flow with axial symmetry.

SYMBOLS
P pressure
p density
s entropy, mechanical units
v velocity
M Mach number
V:  limiting velocity corresponding to adiabatic expansion
to zero pressurs '
a speed of sound
ratio of velocity to limiting velocity (%)

el

7
% x-component of relative velocity
? y-component of relative velocity
x,y Cartesian coordinates

Mach angle <arc sin %)

angle between velocity V and z-axis, radians

angle between tangent to shock and direction of
velocity of flow in front of shock

deviation of direction of velocity across shock wave

angle of polar coordinate in conical field

potential function

stream function for rotational flow (see equation (11))

ratio of specific heat at constant pressure and constant
volume

gas constant

normal to streamline

m G ™

S8 N 2 €N D> >

111



112

sin # tan B sin ¢
cos (¢+8)

_sin Btan Bsin o
cos (¢—f)

H, L, K, and N defined by equation (14)
s=%s—Tp
§y=%c—%a

=

sin Ba
~ cos (Batea)

sin B

f=——rr . L _—

cos (¢z—Bz)
r=tan B,+Ah tan 8z

8g—84 1

A="IF T gf

Subsecripts:

0 chamber condition (zero-velocity adiabatic transfor-
mation)

points of first family

points of second family

quantities in the points calculated from A and B

derivative with respect to z

derivative with respect to ¥

ahead of shock

behind shock

value corresponding to value of ¢ at point C,

at point C,

S e Obuh

S

CHARACTERISTICS METHOD FOR SUPERSONIC POTENTIAL
FLOW WITH AXIAL SYMMETRY

The differential equation for potential flow with axial
symmetry (reference 4) is

(1-% )a2¢+(1_ g’—;; 22‘?”32%%—0 (1)

In supersonic flow some lines can be individuated (charac-
teristic lines) that divide the flow into two regions for which
the values of ¢, ¢, and ¢, along the line are different. For
every point of the flow two characteristic lines can be de-
termined; every line is inclined at the Mach angle with
respect to the direction of the velocity at the point, and
therefore the characteristic lines can be divided into two
families on the basis of the sign of the angle of the characteris-
tic line with respect to the direction of the velocity. A
family that is usually called the first family is defined by
the equation

a’ Y=ten (+¢) (2)
and the other family (second family) is defined by

W —tan (o—6) @)
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The variation of the quantities that define the velocity
(¢ and V) along a characteristic line is given by the following
equations from reference 5:

For the first family,

. d-x—];,-—dgo tan g— l@— (4)

and for the second family,
7
-—%—I—dw tan §—m %= (8)

where [ and m are trigonometric expressions defined as

z=sin B sin ¢ tan §
cos (8+¢)

_sin Bgin ¢ tan g
~ cos (¢—B)

If the direction of the velocity and the Mach number at
two points near each other (points A and B in fig. 1) aro
known, the direction of the velocity and the Mach number
at a point C given by the intersection of the two character-
istic lines of different family starting from points A and B
can be determined. Because the distances BC and AC aro
small, all the coefficients of equations (4) and (5) can be
considered constant and coincident to the corresponding
values at points B and A, and the tangents to the character-
istic lines at points A and B can be substituted for the ehar-
acteristic lines from point A to point C and from point B
to point C. In this case the lines AC and BC are straight
lines. The line BC is inclined at an angle ¢—# witl respecl
to the z-axis and the line AC is inclined at an angle ¢+ 8 with

(6)
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PiGURE 1.—CGeometrical construction for determining point O by the characteristies method.
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respect to the z-axis. Equation (4) can be applied for the
line AC where
dz=xe—,

Y=¥Ya

V=V,

=84

Z=ZA

and equation (5) can be applied for the line BC where

dr=x,—2p

Y=¥n

V="V,

$=8s

m=mg

For practical use equations (4) and (5) are combined and
transformed by means of the ratio T of the velocity V" to
the limiting velocity 17;. This ratio is defined as

(I:’l 2
T? - £

— 142 sin? B (1)
and the following equations are obtained:

doa (tan 53"‘%‘?4 tan BA)=1—%’:‘5—(¢4—¢3) tan Bg

H 2 (25— (r6—24) & P4 ®)
Tri=tan g, do, o= tls ®

We=N4+4dW,
: o

¢o=¢4+d¢4

With the method of characteristics (reference 4) it can
be shown that, if a deviation of a streamline which wets the
body occurs, the phenomena on the corner are regulated by
the same laws that regulate the two-dimensional flow;
therefore, the tangents of every characteristic line starting
from the corner are known. If the initial flow conditions
are known, the step-by-step calculation of all the physical
properties of the flow in the entire field is permitted, partic-
ularly the calculation of the shape of the shock wave and
the pressure distribution along any body of revolution
with axial symmetrical flow in cases in which the hypothesis
of potential flow is correct.

CHARACTERISTICS METHOD FOR SUPERSONIC ROTATIONAL
FLOW WITH AXIAL SYMMETRY

Supersonic perfect flow is rotational when the flow is
preceded by a shock wave and when the variation of entropy
across the shock wave changes from point to point behind
the shock. In this cese the transformation of the fluid
along every streamline is isentropic until another shock wave
occurs in the fluid (reference 8).

If a stream funetion ¢ is assumed to be defined by the-
following equations from reference 8:

1
Y=yu(l— W71

. (11)
Yo=—yo(1—W)"
the equation
DUy 2
= ¥ 1
(e —— (

is a function of only the stream function ¢ (reference 8);
and therefore from the equations of state, continuity, energy,
and steady motion the following equation can be obtained:

(1-% !l/u—z—;?%.«+<1 %) vt

— (117 (Wq—l)fw) 0 (13)
Equstion (13} is a Monge-Ampére equation, and if

=1~

-1

%

N=—Ypa_w (B ao

two characteristic families with the following equations can
be obtained: For the first family,

&y K [BEE L

& B VE & (15)
v!/u+< H—i-\/ —2—L) Yt H—o (16)
and for the second family,
dy H+ ?_E (17j"
bt (B[ B D) bt =0 (18)

If n is the normal to the streamline, equation (11) yields

‘pzz‘l“l’rz:
2
=(g—£) =grad*y (19)
and
curl V><V 1 1 ds .\
— @ = RE grad s =B (20
because s is constant along every streamline; therefore
11ds 1
=5 ——— (21)
i

y w2 (1——?17")'7%i B



114

and the following expressions can be obtained:

Yo —yna(1— W) 7= (1) 710

Zva(l wyT W,
L (22)
e ITI Y. ""1:1
=yu (1—W2) 7~ +35u(1 W3
2qu
J

When equations (21) and (22) are subsfituted in equations
(15) and (17) and (16) and (18) and the Mach angle and the
velocity are expressed in polar coordinates, equations {15)
and (17) become

Z—%=tan (B+¢)  (first family) (23)
%=tan (¢—B)  (second family) (24)

and equations (16) and (18) become

dVl dz ds _sin®g .

4

-ﬂ—+tan Bdga—d%x m— f{% %ﬁ% 0 (second family) (26)

Equations (23) and (24) are identical to equations for
potential flow (2) and (3), and equations (25) and (26) are
similar to equations for potential flow (4) and (5), differing
only by the terms that contain ds. Egquations (23) to (26)
permit a step-by-step calculation of the entropy, intensity
of velocity, and direction of the velocity if the initial and
boundary conditions are known. If all physical properties
are known for two points A and B and if the two points are
close to each other, the tangents to the characteristic lines
at the points A and B can be substituted for the characteristic
lines with close approximation. In this way a point C can be
determined as the intersection of the second characteristic
line of point B with the first characteristic line of point A
(fig. 1), because ¢ and B are known for the points A and B.

For the characteristic lines of the first family, equation
(25) gives the variation of ¢ and W from point A to point C,
and all the coefficients are known and correspond to the

coeficients for point A; only the term % 1s unknown. From
equation (26) the variation of ¢ and W from point B to point

C can be determined, and all other terms, except g—;; are

known and equal to the values for point B. The term g{f

can be determined from the value of the entropy for points
A and B.

From figure 1, in equation (25) the term % can be writ-
ten as

_di___(sc—‘s.{') cos (34.'.1:90.4)

dn (tc—x4) sin B,

(27)
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and in equation (26) can be written as

ds _ (8s—Sc) €08 (@gs— ﬁa)
dn (xe—xpg) sin Bs

If the points A and B are close to each other and the varia-
fion of entropy is gradual, equation (27) can be writlen as

ds __ .
dn 81n Ba “sin Ba

o) o5 Gt en T ) 55 (oa—Ba)

- (28)

8p—84

(29)

and gg can be considered equal in equai:ions (25) and (26),

In this case gﬁ is known; therefore ¢ and W can be calculated

for point C. For practical calculations equations (25) and
(26) should be transformed into two equations (equations (31)
and (32)) each of which contains only one of the unknown
terms dw and de.

For simplicity, let

L k=24 —%p I
S=Tc—Ta
g=1+§’-
0
Ap=pi— oz
L/ _
s # (30)
o— 8in Ba
cos (B4t 50:15
f= sin ﬁB
c0s (¢r—f3)
r=tan Bz+Fk tan B,
—88—84 .
R e+af J
Then the following equations can be obtained:
rdes=1—h—Agptan B+ A(gf sin? 85+ hesin? 8;)
&msg bl
+ ¥s Ya (31)
%_tan Ba dga— e sm=ﬁ4+ﬂ‘- . (32)
Sc=84-+AeyR (33)
ve=eatdos (34)
Wo=W,+dW¥, (35)
sint =25 (11_1—2— 1) (36)
c

In equahon (31) the terms &z'l:g

and %‘-‘ become very im-
portant as y approaches zero, near the axis of the body ;
therefore, in this region the distance between the points con-
sidered must be reduced to obtain sufficient accuracy.
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CHARACTERISTICS METHOD FOR TWO-DIMENSIONAL
SUPERSONIC ROTATIONAL FLOW

In two-dimensional flow an equation similar to equation
(13) can be obtained if a special stream function defined by
the following equation is essumed (reference 8):

1
=u(1—TW2)r1
Yr=u( ) 1 (37)
Y= —p(1— W2)71
In this case the equation of motion (equation (13))becomes
(reference 8)

(1-%) b2 bt (1=%) ¥

—a—ye (B-1) =0

(38)

Equation (38), like equation (13), is a Monge-Ampére
equation and permits the determination of two equations that
define the characteristic lines and two equations that give
the variation of the velocity along the characteristic lines.
The equation with transformations analogous to the case of
three-dimensional flow can be written in the following form:

Wetan (8+¢) (st family) (39)

dy .

7,=tan (¢—B)  (second family) (40)
t%t—tan B d¢+j§ % cossl(%—[l?qa) 0 (first family) (41)

dr ds sin® g

W -I-tan Bde— YR Tn 008 (o—B) =0 (second family) (42)

Equations for ¢ and dW similar to equations (31) and (32)
can be obtained from equations (39) to (42) by using equation

(29) for the expression 3% as follows:

1—h—Agp tan Sz+A(gf sin® Bz-1he sin® 84) (43)
i,

rdeoa=

W, —*=tan B, dp—Ae sin? B, (44)
8o=8,+AevR (45)
pc=opatdoa (46)

We=W,+dW, (47)
. —1 1
sin® Bc='YT <W;z— 1) (48)

DETERMINATION OF SHAPE OF SHOCK AND PRESSURE
DISTRIBUTION ALONG A BODY

The physical properties of supersonic flow past a body of
revolution in axially symmetirical flow can be determined
step by step by the use of equations (31) to (36). The sys-

== ) Cnrl
7
/4
/
s
S/
7/
Ve
B //
7 \7Cn
/ //
Shack wove-.. /[ characteristic line

- YR

v
. // /
/
L6 N\8// Ag
——— 1231
, A

— ¢ ’
2 A A

2277
7777

FIGTRE 2.—Practical system of calculating the flow feld for 8 pointed-nose body of revolution.

tem of calculation is similar to that for potential flow. If the
body begins with a point (reference 5), a cone tangent to the

body (fig. 2} cen be substituted for the front part of the body.
If point A is the point at which the body can no longer be
considered coincident with the cone, the velocity at point A
is known from the cone calculations (references 9 and 10);
therefore, the shape of the characteristic line AB of the first
family can be designed, because ¢ and 8 corresponding to
different angles # are known from the cone calculations.
At point A the body twrns through an angle Ay and the flow
undergoes & transformation that is determinable by the laws
of two-dimensional flow. The velocity and direction of the
flow after the deviation A, therefore, and the tangents to
the new characteristic lines of the first family at point A can
be designed. At a point B, near point A, the intensity and
direction of the velocity are known; consequently, the tan-
gent to the characteristic line of the second family can be
designed at point B, and the point C, can be located. At
point C; the physical properties can be caleulated with the
equations of potential flow (equations (8) and (9)) because
the shock in front of the body is conical. With the same
system the point C, is determined from the point B, on
the shock wave. In order to determine the flow of the point
C,.1 on the shock wave, the equation across the shock and
the equation for the characteristic lines of the first family
must be used. If e is the angle between the tangent to the
shock and the direction of velocity of flow in front of the
shock, § the deviation of the direction of velocity across the
shock wave, and the subscripts ¢ and & denote the conditions
ahead of and behind the shock, respectively, the shock equa-
tions can be written in the following form (reference 11}:

tan ¢ ¥v—1
tan (e—8) ~v+1 [ﬂf, 2 sin? (e—$ )+ :l (49)
1 1 M2
TR 742_ MFsn e—l—l) tan e (50)
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Py 27 M2 sin? e—7—1

a—’Y+1 (_51)
Pa__ 2 1 v—1
P v+1(M: SnTet 2 ) (62)
8p—8; 7_1<10g,p¢+'ylog‘pb ( )
1 2 1. .
T T A (54)

Equations (51) to (53) show that the general condition for
obtaining potential flow behind the shock when the flow in
front of the shock is potential is that M, sin ¢ must be con-

stant. Since the value of M, in front of the shock is known
from equations (49) to (54), the values of @%;_s_a_) and %V

can be determined as functions of & and therefore the equa-
tion for the characteristic lines of the ﬁrst famle (equa,tlon
(25)) becomes

Weo,=Weo  aW dp

dz
—‘—“7—— "{"m —tan ﬁc,, d‘{’_% lc,‘

sin? ﬁc

e DI ) SR

where W,, is the velocity behind the shock, Sec, is the

entropy, _aﬂ_ and d(SZZa —8a)
a deviation across the shock for which the velocity assumes
the direction of ¢c,, We, is the velocity, and s, is the entropy
at the point C,. When the value of dp has been determined,
the deviation across the shock & and the corresponding values
of W and ¢ can be determined at point Cpy;.

In order to determine the velocity on the body at a point
A,, equation (26) is used. At point A; the value of ¢ is
known because the direction of the flow is tangent to the

are coefficients that correspond to

body and, therefore, dy is known; % is also known because

in equation (27) the value of s¢ corresponds to the value of
8 at the point A, and is equal to the value at point A, which
is known from the cone calculation. From the value of W,
the pressure on the body relative to the pressure p,’ (pressure
for zero] velocity from isentropic transformation from the
conditions behind the shock) can be determined as
P 1—wn (56)

Do
On the lip of the nose of an open-nose body a shock wave
that is & two-dimensional shock occurs; therefore, the tan-
gent to the shock on the lip is known and the pressure and
velocity behind the shock are also known (equations (49)
to (54)). In figure 3 the line AB and the velocity behind
the shock at point B are known. With equation (26) the
velocity at point C can be calculated with the system just
described, and from the point B the point D along the charac-
teristic line of the first family can be calculated by equation

REPORT NO. 841—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

(55). From point D the point E can be caleulated and a
point F can be interpolated, which permits the delermination
of points G and H. Because the curvature of the shock
near the lip is large, a point C that is very near point A must
be selected so that correct interpolated values may bo ob-
tained. The point E can be recalculated from point G, and
the points I and M can be recalculated from point F in order
to have a second approximation.

For the case of two-dimensional flow the procedure is the
same as that for three-dimensional flow; equations (43) to
(48) ara used instead of the corresponding equations (equa-
tions (31) to (36)}.

EXAMPLES OF APPLICATION OF CHARACTERISTICS
METHOD FOR ROTATIONAL FLOW

DETERMINATION OF SHOCK SHAPE AND PRESSURE DISTRIBUTION
ALONG THE EXTERNAL SURFACE OF A SLENDER OPEN-NOSE BODY OF
REVOLUTION

Theoretical and experimental calculations were made to
determine the shock shape and pressure distribution along
the external surface of a slender open-nose body of revolu-
tion. The body considered is the same body for which cal-
culations of the external pressure distribution were made by
Brown and Parker of the Langley Memorial Acronautical
Laboratory by use of the small-disturbance theory. The
calculations were made for a free-stream Mach number of
1.525, for which a schlieren photograph taken during tests
wes available for comparison of the calculated and test
results, ..

In order to determine the importance of rotation of the
flow, calculations for the front part of the body were also
made with the potential-flow characteristic equations. The
results of these calculations differed only slightly from those
obtained_from the characteristics method for rotational flow
because the curvature of the shock was very small. The

FiguRE 3,—Practical system of calculating the flow feld for a slender open-nose body of
revolution.
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Body of revoluton

FIGURE 4.—Practical system of caleulating the external low around a slender open-nose body
of revolution for M =1.525.

calculations were begun with the determination of the two-
dimensional shock on the lip of the nose. The practical
system of the calculations is shown in figure 4, and in figure
5 the calculated streamlines and shock-wave shape are com-
pared with the shock-wave shape obtained from test results.
In figure 6 the pressure distribution celculated by the char-
acteristics method is compared with the pressure distribution
determined by the small-disturbance theory. The small-
disturbance theory undervalues the increase in pressure that
occurs through the shock, but the differences in the results
obtained by this method and those obtained by the charac-
teristics method are small.

o Experimental o

af the fip
1484 _ e
Jiuss L481.
f 1475,
1453 1473

———— e —— e —— I - —

FIGCRE 5.—Calculated sireamlines and shock wave for a slender open-nose body of revolution
for M=1.525, showing experimental shock-wave shape. .

DETERMINATION OF SHOCK SHAPE, STREAMLINES, AND PRESSURE DIS.
TRIBUTION ALONG THE INTERNAL SURFACE OF A SLENDER OPEN-NOSE
BODY OF REVOLUTION

Three slender open-nose bodies with different conical inlet
angles are considered (figs. 7 to 12) and the supersonic part
of the internal flow is studied for a free-stream Mach number
of 1.6. For this type of body the internal shock produced
at the lip of the inlet has a very large curvature and the effect
of rotation is therefore very important. The calculations are
extended to the region in which the Mach number is 1.0.

Le

Body of revolution
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FIGURE 6.—Pressure distefbutfon along the external surface of & slender open-nose body of revelution for AMf=1.525. (Data for small-disturbance theory from work by Brown and Parker
of the Langley Laboratary.)
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T soric flow
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F16URE 7.—Practleal system of cdleulating the internal supersonie-flow quantlties for a
ﬂﬁder open-noss body of revolution for Mm=t.6. ¢ Fravre 8.—Cileulated streamlines and shock wave for internal flow in a slender open-nose
body of revolution for M=1.6.
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F1GURE 8.—Practical system of calculating the Internal-supersonic-flow propertles for a FIGURE 10,—Calculated streamlines and shock wave for internal flow In & slender open-nose
slender open-nose body of revolution for M=1.8. body of revolution for M=1.6.
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FIQURE 11.—Practiecal system of caleulating the internal supersonie-flow properties for a
slender open-nose body of revolution for Af=1.6,

The hypothesis is made that subsonic boundary conditions
and stebility considerations permit a subsonic flow at the
end of the supersonic flow such as results from the calcula-
tions. The results of the calculations show that at the
axis of the inlet & normal shock always oecurs and that the
region in which a strong shock occurs (with subsonic velocity
behind the shock) increases in extension with the increase
in angle of the internal cone. When the cone angle ap-
proaches zero and the shock is a Mach wave, a complete
reflection occurs at the axis of the inlet and the extension of
the strong shock is zero.

For large internal cone angles (figs. 9 to 12) the shock is
a simple shock that becomes normal in the eentral part of
the body of revolution. After the shock the ecompression
continues but the characteristic lines cannot form an enve-
lops. For small internal cone angles compression occurs
gradually and an envelope of Mach lines occurs. The shock
therefore reflects from the central part and another shock is
generated. The form of the reflected shock is shown in figure
8. The ratio of the diameter of the region in which a strong
shock occurs to the diameter of the inlet as a function of the
internal cone angle is shown for A{=1.6 in figure 13. The
results are interesting for the practical design of supersonic
inlets of slender shape because they show that for large cone
angles the central part of the body of revolution, in which
the compression is not very efficient, is large.
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/ Subsorvc flow

FicTRE 12—Caleunlsted streamlines and shock wave for Internal flow in a slender open-nose
body of revolution for Af=1.6.

DETERMINATION OF PHYSICAL PROPERTIES OF THE INTERNAL FLOW
THROUGH AN INLET WITH A CENTRAL BODY

For a Mach number of 1.6 an analysis of the shape of an
inlet with a central body was made to a2id in obtaining high
efficiency. Theoretically & supersonic diffuser with or with-
out a central body and having no shock losses or shock drag
can be obtained (reference 12); but for practical use it is
convenient to accept small shock drag in order to avoid large
friction drag. The inlet considered (fig. 14) has a 10° central
cone. The deviation across the conical shock is 48’. 'The
shock is reflected by a cylinder that forms the externel part
of the inlet. The reflected shock produces rotational flow
behind the shock and the deviation across this shock on the
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FIGURE 13.—Ratlo of the dlameter of the region In which strong shock occurs to the diameter of the Inlet ag & function of tho angle of internal cone, Af=1.6.
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F16URE 14.—Practlcal gystem of calculating the shape of the central body, of the streamlines, and of shock-wave shape for a supersonie inlet at Af=1.8.
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Body of revolution

F16URE 15.—Practicel system of caleulating the shape of the central body and of the streamlines of the tall of a body without pressure drag for Mf=1.8,

cylinder is 1° and on the central body, 2° 43’. If the cen-
tral body behind the shock has the same direction as the
velocity, the shock will not be reflected and isentropic
compression can be obtained behind the shock (fig. 14).
The design of the central body, therefore, was deter-
mined from the calculation of the corresponding streamline.
The variation of the velocity along the external cylinder and
the value of the exit velocity were fixed, and from this con-
dition and the condition dependent on the shock, the ve-
locity at every point was calculated. In order to avoid
errors stream tubes were designed that permitted, on the
basis of the ratio of the area in the region of uniform velocity
to the area at the end of the stream tube, & check on the
precision of the numerical ‘calculations. The Mach num-
ber in the minimum section of the inlet was fixed at a value
larger than 1.0 so that disturbances from the subsonic part
of the flow would not cause instability. The value chosen
was 1.09. :

If an effuser is conmnected with the diffuser, a body of
revolution with very low shock drag can be obtained (fig.
15). The only pressure losses are the losses across the two
shocks, which are very small; but for practical applications
the friction losses are larger than for the internal body alone.
A balance of the pressure losses and friction losses must
therefore be made in order to examine the possibility of
practical use of this arrangement.

CONCLUSIONS

A gystem for calculating the physical properties of super-
sonic rotational flow with axial symmetry and supersonic
rotational flow in a two-dimensional field was determined

by use of the characteristics method. Practical use of the
system is based on a step-by-step procedure, which requires
long numerical calculations; but the calculations for three-
dimensional flow are of the same type as for potential flow
and, therefore, ean be used for the practical problems in
which rotation is important. Some applications were made
to determine the external and internal flow on bodies of
revolution with axial symmetry, and the following con-
clusions were indicated:

1. The effect of rotation is not very important if the
variation of entropy is small but is important in the study
of internal flow, for which the variation of entropy is usually
large.

2. When the inlet is a circular conical channel, & shock is
produced at the lip of the inlet that becomes stronger when
the shock approaches the axis of the inlet and becomes a
normal shock at the axis. The region in which & strong
shock occurs (with subsonic velocity behind the shock) in-
creases with the increase of the angle of internal cone.

3. If an inlet with a central body is considered, the method
of characteristics permits the design of an internal-channel
shape that, theoretically, results in very efficient recom-
pression in the inlet; and, if an effuser is connected with the
diffuser, a body of revolution with very small shock-wave
drag can be determined.

LanGLEY MEMORIAL AERONAUTICAL LABORATORY,
Narronan ApvisorY COMMITTEE FOR AERONATUTICS,
LangLey FieLp, Va., April 29, 1946.
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